Xenosporium amomi sp. nov. from Zingiberaceae in Thailand

Boonsom Bussaban¹*, Pipob Lumyong², Eric H.C. McKenzie³, Kevin D. Hyde⁴ and Saisamorn Lumyong¹

¹Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
²Department of Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
³Landcare Research, Private Bag 92170, Auckland, New Zealand
⁴Centre for Research in Fungal Diversity, Department of Ecology & Biodiversity, The University of Hong Kong, Pokfulam Road, Hong Kong

Xenosporium thaxteri and an undescribed species of Xenosporium were found as saprobes on dead pseudostems of Alpinia malaccensis and Amomum siamense in Doi Suthep-Pui National Park, Chiang Mai, Thailand. The new species, X. amomi is described, illustrated and compared with similar Xenosporium species. The diagnostic characters of the 14 accepted species of Xenosporium are provided and the genus is reviewed based on the literature.

Key words: Alpinia malaccensis, Amomum siamense, anamorphic fungi, secondary conidia

Introduction

The genus Xenosporium was described by Penzig and Saccardo (1902) with X. mirabile as type. Pirozynski (1966) recognized the close similarity between Xenosporium and Xenosporella Höhn. and transferred the four known species names of Xenosporella (Linder, 1929) to Xenosporium. He found that the difference between the type specimens of Xenosporella and Xenosporium is only one character, i.e. the thickness of the conidial filament. This made their length to width ratio differ, affecting the degree of coiling (coiled or slightly curved). Pirozynski (1966) also provided descriptions of six species with a taxonomic key. Subsequently seven additional species have been described (Panwar et al., 1973; Rao and Rao, 1973; Rao and Varghese, 1977; Hughes, 1978; Vittal, 1981; Holobová-Jechová, 1988; Karandikar and Patwardhan, 1992) and the teleomorph of X. indicum has been recognized (Subramanian and Sekar, 1980). Goos (1990) reviewed the genus and updated the key to species.

*Corresponding author: B. Bussaban; e-mail: bussaban@hotmail.com
There are presently 13 names for *Xenosporium* species in IndexFungorum (http://www.indexfungorum.org/Names/Names.asp).

Xenosporium is an anamorphic fungus, producing pale to dark brown dictyospores acrogenously from simple or branched conidiophores that arise from the repent hyphae. The conidia are characteristically incurved, flattened from side to side, and they produce secondary conidia (Penzig and Saccardo, 1902; Ellis, 1963, 1971; Pirozynski, 1966; Goos, 1987, 1990). However, the range of conidial forms described provides a morphological continuum from the dorsiventrally curved form to the nearly globose or ellipsoid forms (Goos, 1987, 1990).

During our investigation of saprobic fungi on the wild ginger, *Alpinia malaccensis* and *Amomum siamense* (Bussaban et al., 2001), we found *X. thaxteri* (Linder) Piroz. and an undescribed species of *Xenosporium*. These two taxa are described and illustrated in the present paper. Diagnostic characteristics of the known species are listed in Table 1.

Taxonomy

Xenosporium amomi Bussaban, sp. nov.
(Figs. 1-9)

Etymology: referring to the host, *Amomum*.

Colonies effuse, at first white with scattered developing conidia, becoming dark brown. *Mycelium* superficial, composed of pale to dark brown, branching, septate hyphae. *Conidiophores* arising laterally from hyphae, erect or flexuous, simple, pale brown to brown, smooth, up to 26 µm long, 3-3.2 µm wide. *Conidia* 45-64 × 15-20 µm ($\bar{x} = 50.7 \times 17.2$ µm, n = 30), formed singly at the apex of conidiophore, at first hyaline, becoming dark brown with hyaline, distinctly cylindrical basal and apical cells, composed of 2-3 rows of cells with dark, thickened walls, muriform, curved. *Secondary conidia* 6-10 µm diam, subglobose to globose, 1-2 (-3) formed along the inner curved side of the primary conidia, muriform, hyaline to brown. In the older conidia, the terminal hyaline cell extends into a branching germ tube (Fig. 9).

Table 1. Diagnostic characteristics of the species of *Xenosporium*.

<table>
<thead>
<tr>
<th>Species</th>
<th>Conidiophore size (µm)</th>
<th>Conidia size (µm)</th>
<th>Secondary conidia</th>
<th>Number</th>
<th>Septation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conidia dorsiventrally curved:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. X. amomi</td>
<td>up to 26 × 4.8-6.4</td>
<td>45-64 × 15-20</td>
<td>6-10</td>
<td>1-2</td>
<td>Muriform</td>
</tr>
<tr>
<td>2. X. berkeleyi</td>
<td>up to 80 × 4.5-8</td>
<td>20-27 × 6.5-11</td>
<td>5-7</td>
<td>1</td>
<td>Unicellular</td>
</tr>
<tr>
<td>3. X. cubense</td>
<td>up to 36 × 3.5-5.5</td>
<td>40-53 × 17-30</td>
<td>7-11</td>
<td>1-6</td>
<td>Muriform</td>
</tr>
<tr>
<td>4. X. indicum</td>
<td>up to 32 × 3-3.5</td>
<td>18-27 × 8-12</td>
<td>4-6</td>
<td>1</td>
<td>Unicellular</td>
</tr>
<tr>
<td>5. X. larvae</td>
<td>up to 70 × 3-5</td>
<td>13-20 × 6-10</td>
<td>3-5</td>
<td>1</td>
<td>Unicellular</td>
</tr>
<tr>
<td>6. X. mirabile</td>
<td>up to 105 × 7-11</td>
<td>60-105 × 8-18</td>
<td>7-20</td>
<td>2</td>
<td>Muriform</td>
</tr>
<tr>
<td>7. X. pirozynskii</td>
<td>up to 109 × 5-10.5</td>
<td>31-48.5 × 12-15.5</td>
<td>7-10.5</td>
<td>1-4</td>
<td>Unicellular</td>
</tr>
<tr>
<td>8. X. pleurococcum</td>
<td>up to 45 × 3-7</td>
<td>25-35 × 11-20</td>
<td>6-11</td>
<td>1</td>
<td>Unicellular</td>
</tr>
<tr>
<td>9. X. thaxteri</td>
<td>up to 30 × 5-8</td>
<td>40-55 × 13-22</td>
<td>8-15</td>
<td>2-3</td>
<td>Muriform</td>
</tr>
<tr>
<td>Conidia ellipsoid:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. X. africanum</td>
<td>up to 60 × 5-9</td>
<td>50-90 × 33-70</td>
<td>5-14</td>
<td>2-4</td>
<td>Muriform</td>
</tr>
<tr>
<td>11. X. boivinii</td>
<td>up to 90 × 4-7.2</td>
<td>70-100 × 36-70</td>
<td>12-18</td>
<td>1</td>
<td>Muriform</td>
</tr>
<tr>
<td>12. X. intermedium</td>
<td>up to 50 × 5-6</td>
<td>85-105 × 33.5-45</td>
<td>6-7.5</td>
<td>1-3</td>
<td>Unicellular</td>
</tr>
<tr>
<td>13. X. subramanii</td>
<td>up to 45 × 4.5-6</td>
<td>64-95 × 34-42</td>
<td>11-17</td>
<td>At least 1</td>
<td>Muriform</td>
</tr>
<tr>
<td>Conidia ovate:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. X. shoranoorense</td>
<td>up to 62 × 3.6-7.2</td>
<td>34-54 × 20-35</td>
<td>7-11</td>
<td>1-4</td>
<td>Muriform</td>
</tr>
</tbody>
</table>

Curved = axis curved through at least 180° in mature conidia.
Known distribution: Thailand.

Xenosporium amomi is similar to X. berkeleyi (M.A. Curt.) Piroz., X. indicum Panwar, Purohit & Gehlot, X. larvae (Morgan) Piroz. and X. pleurococcum (Höhn.) Piroz. in having curved conidia with few rows of cells. The new species, however, has conidia usually composed of 3 rows of thick-walled cells, and 1-2 secondary conidia. Xenosporium amomi has larger conidia than these other species, and it also has distinctly cylindrical basal and apical cells. The secondary conidia of X. amomi are multicellular, whereas those of X. berkeleyi, X. indicum and X. larvae are smaller and unicellular (Table 1).

= Xenosporella rosea Talbot, Bothalia 4: 491 (1956).

Colonies effuse, at first covered by a white mass of developing conidia, becoming brown at maturity. Mycelium superficial, composed of hyaline to pale brown, branching, septate hyphae. Conidiophores arising from hyphae, erect, straight, septate, hyaline to subhyaline, smooth, up to 23 µm long, 4.8-6.4 µm wide. Conidia 42-50 × 18-22 µm, tapering at the ends, at first hyaline and indistinctly septate with apical cell sometimes distinctly brown (Figs 10, 11), becoming brown and completely septate from the center outwards (Fig. 15), muriform, twisted to the axis of the conidiophore and 1.5-2.5 times tightly spirally coiled. Secondary conidia 8-13 µm diam, dark brown, even on immature hyaline primary conidia, globose, muriform, formed in groups of 3-4 on the inside of the coil.

Material examined: THAILAND, Chiang Mai, Doi Suithep-Pui National Park, on dead pseudostems of Amomum siamense (Zingiberaceae), 15 October 2000, B. Bussaban CMUZS54-1, CMUZS54-2; ibid., on dead pseudostems of Alpinia malaccensis (Zingiberaceae), 20 May 2001, B. Bussaban CMUZS 100 (PDD 77015).

Known distribution: South Africa, Tanzania, Trinidad, Thailand.

This species was originally described as Xenosporella thaxteri (Linder, 1929). Our specimens agree with X. thaxteri in most morphological characters, with a minor difference in the brown apical cell of immature primary conidia (Figs 10, 11).

Acknowledgements

This work was supported by The Thailand Research Fund (Royal Golden Jubilee Ph. D. Program 4B4M/43/D1).
References

(Received 21 February 2003; accepted 27 May 2003)