Introduction to fungal succession

Kevin D. Hyde* and E.B.G. Jones

1Centre for Research in Fungal Diversity, Department of Ecology & Biodiversity, The University of Hong Kong, Pokfulam Road, Hong Kong SAR
2National Center for Genetic Engineering and Biotechnology, 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani, Thailand 12120


This volume of Fungal Diversity is devoted to fungal succession. The term fungal succession is used loosely throughout the volume. A precise definition of fungal succession is “the sequential occupation of the same site by thalli (usually mycelia)”, but the term can be used more loosely to refer to “the sequential occurrence of fungal fruiting bodies on substrata as it decays”. This volume brings together various studies on fungal succession including the traditionally studied macrofungi and the less well-studied microfungi. In this way we have brought together much of the data available on fungal succession. The final paper in this volume discusses the problems associated with studying fungal succession, especially in microfungi, and discusses possible methods to overcome these problems.

Key words: macrofungi, microfungi, sequential occurrence.

Introduction

Fungal succession has been defined “as the sequential occupation of the same site by thalli (usually mycelia) either of different fungi or of different associations of fungi” (Rayner and Todd, 1979) who placed importance on the occupation of sites by mycelium. Fungal succession has also been referred to as “a sequence of fungi sporulating on a substrate”. This definition cannot be regarded as fungal succession in a strict sense as it does not necessarily involve replacement of one fungal taxon by another and may purely be affected by the time it takes for each fungus to sporulate on a substrate. The subject of fungal succession has been reviewed by Frankland (1992, 1998) and in this volume Fryar (2002) suggests that to avoid confusion, fungal succession may be better termed “mycelial succession” to emphasise the importance of observing changes in mycelial distribution. In addition, the term “sequence of fungal sporulation” should be used rather than the term “fruit body succession” to provide further clarification in describing these processes. The term fungal...
succession is, however, used loosely throughout this volume and may refer to a strict succession or a sequence of fungal sporulation.

The volume includes 16 papers dealing with various aspects of fungal succession. In the first paper, Fryar (2002) provides an overview of succession and a discussion of various aspects of fungal succession, while Susuki (2002) examines succession at the macro- and micro-scales. Macrophungal succession has been well-studied and is dealt with in two papers in this volume. McMullan-Fisher et al. (2002) provide data on the changes in the occurrence of macrofungi with time following forestry activities and fire at 14 sites in Mountain Ash (Eucalyptus regnans) dominated forests in Australia. Data on the sequential appearance of ammonia fungi after urea treatment is provided by Susuki et al. (2002). The results indicate that successive occurrence of ammonia fungi in the field results from a combination of sequential propagation (colonisation) and the time needed for each fungus to produce reproductive structures.

The volume includes 11 papers presenting studies on succession of microfungi on various decaying substrata. Richardson (2002) reviews the literature on dung fungi and presents new data from observations made on samples collected for a study of the occurrence and diversity of coprophilous fungi. Succession of fungi on dung is understood to be a sequence of observation of fungi, as identified by their fruiting, rather than an understanding the sequential replacement of one organism by another. Tokumasu and Aoiki (2002) present a novel approach for studying microfungal succession on decaying pine needles in Japan. Three succession stages were recognized and characteristic species of each stage are demonstrated. Three papers deal with the sequence of fungal sporulation on submerged wood in temperate and tropical regions (Ho et al., 2002; Kane et al., 2002; Sivichai et al., 2002) and highlights the differences in fungal diversity between geographical locations. Four papers report on the sequence of fungal sporulation in tropical forests: one paper deals with decaying seeds of Delonix regia in Thailand (Somrithipol et al., 2002); one on decaying fronds of the palm Phoenix hanceana in Hong Kong (Yanna et al., 2002), Zhou and Hyde (2002) provide data on bamboo, while Promputtha et al. (2002) consider fungal succession on senescent leaves of Manglietia garrettii in northern Thailand. In all of these studies a sequence of fungal sporulation was observed and again underlines the great differences in the diversity of taxa observed. Panebianco et al. (2002) addresses the parameters that may affect fungal succession of marine fungi under experimental conditions in the field. Finally, Zhou et al. (2002) provide results on the infection sequence and pathogenicity of Ophiostoma ips, Leptographium serpens and L. lundbergii to pines in South Africa.
The final paper in this volume discusses some of the problems associated with studies of fungal succession, particularly with microfungi and proposes ways in which these problems could possibly be addressed. Compilation of this volume on fungal succession provides one location where much information on fungal succession, from diverse substrata, habitats and geographical locations, can be referenced and will hopefully stimulate future studies.

References


(Received 21 May 2002; accepted 1 June 2002)