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Suitable substrates for laccase production by the thermotolerant basidiomycete Coriolus
versicolor strain RC3 were screened using solid and liquid media. In liquid basal medium,
1%(w/v) rice bran as a carbon source was found to be the most efficient substrate for laccase
production compared to 1%(w/v) glucose, wheat bran and rice straw meal. After 15 days
cultivation at 37°C in shake flask culture, the extracellular laccase activity was found to be
0.22U/ml with rice bran, while 0.09, 0.01 and 0.01U/ml were obtained from wheat bran,
glucose and rice straw meal, respectively. The optimum concentration of rice bran was
1%(w/v). Comparison of laccase production on three different selected solid substrates
including rubber wood meal (Heavea sp.), Hang nok yoong wood meal (Delonix regia) and
rice bran, were carried out using 5g of solid substrate supplemented with 15ml of distilled
water and cultivated at 37°C in the dark for 30 days. Laccase production from C. versicolor
strain RC3 was 1.98, 0.06 and 0.07U/g substrate from rice bran, rubber wood meal and Hang
nok yoong wood meal, respectively. The highest laccase productivity with rice bran in liquid
medium was 22U/g substrate at 15 days cultivation. This was 11 times higher than the
maximum activity obtained at 30 days on solid substrate cultivation.
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Introduction

Laccase (E.C. 1.10.3.2, p-benzenedial: oxygen oxidoreductases) is an
oxidoreductase able to catalyse the oxidation of various aromatic compounds
(particularly phenol) with the concomitant reduction of oxygen to water
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(Thurston, 1994). Laccases are found in plants, insects and bacteria, but the
most important sources of these enzymes are basidiomycetes (Abdel-Raheem
and Shearer, 2002; Risna and Suhirman, 2002; Urairuj et al., 2003). Fungal
laccases are considered to play a role in lignin degradation and/or the removal
of potentially toxic phenols arising during morphogenesis, sporulation, or
phytopathogenesis and fungal virulence (Gianfreda et al., 1999). The role of
laccases in lignin and phenolic compound degradation has been evaluated in a
large number of biotechnological applications such as dye degradation (Wong
and Yu, 1999) and bioremediation of some toxic chemical wastes (Glen and
Gold, 1983; Swammy and Ramsay, 1999; Mayer and Staples, 2002). Laccases
are also likely to be applied in the pulp and paper industries (Pratima, 1999),
wastewater and soil treatments (Nelson and Elisa, 2000) and also biosensor
developments (Nelson et al., 2002; Kulys and Vidziunaite, 2002). The
potential use of laccases in biotechnology has stimulated the need to discover
suitable enzymes in large quantities. Laccase production may be affected by
fermentation factors such as, medium composition, pH, temperature and
aeration. There have been reports describing increased production of
extracellular laccases in many species of white rot fungi when grown on
natural substrates, such as cotton stalk (Ardon et al., 1996), molasses waste
water (Kahraman and Gurdal, 2002), wheat bran (Souza et al., 2002) and
barley bran (Couto et al., 2002). Utilization of industrial and agricultural
wastes for laccase production is an effective way to reduce production costs
and also simultaneously utilise these substrates efficiently (Risna and
Suhirman, 2002). This paper describes the selection of suitable substrate for
laccase production by Coriolus versicolor strain RC3 in solid liquid media.

Materials and methods

Fungal strain

Coriolus versicolor strain RC3 is a thermotolerant white rot fungus
isolated from Chiang Mai province, Thailand (Khanongnuch et al., 2004). It
was cultivated at 37°C on potato dextrose agar (PDA) and stored at 4°C. The
culture has been deposited at Laboratory of Applied Microbiology, Biology
Department, Faculty of Science, Chiang Mai University, Thailand.

Laccase production on solid substrate

Mycelial plugs from 3-day-old cultures of C. versicolor RC3 on PDA
were transferred to 250mL Erlenmeyer flasks containing 5g solid substrate and
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15mL distilled water. The solid substrates were rubber wood meal (Heavea
sp.), Hang nok yoong wood meal (Delonix regia) and rice bran. Cultures were
incubated at 37°C in the dark for 36 days. Enzymes were extracted by adding
50mL of distilled water to the culture and mixing at 4°C for 1 hour. The
mixtures were filtered through cotton cloth and the filtrates used as enzyme
solutions.

Laccase production in liquid culture

Coriolus versicolor strain RC3 laccase production in liquid culture was
investigated using rice bran, wheat bran, glucose and rice straw meal as the
sole carbon sources. Composition of liquid medium consisted of 5g carbon
source, 1g KH2PO4, 0.5g MgSO4.7H2O, 0.2g NH4NO3, 0.1g yeast extract,
0.01g CaCl2, 1mg CuSO4.5H2O, 1 mg FeSO4.7H2O and 1mg MnSO4 per liter
of water. Five mycelial plugs were inoculated into 250ml Erlenmeyer flasks
containing 50mL of liquid medium with each carbon source and cultured at
37°C on a rotary shaker (150 rpm) for 15 days.

Enzyme assays

Laccase activity was determined by oxidation of 2,6-dimethoxyphenol
(DMP) at room temperature. The reaction mixture contained 0.05mL of 4mM
DMP, 0.5mL of 20mM acetate buffer pH 5.0, 0.35mL distilled water and
0.1mL enzyme solution. DMP oxidation was monitored by determination of an
increasing in absorbance at 470nm (ε470; 49.6 mM-1 cm-1). One unit of laccase
activity was defined as 1µmole of DMP oxidized product formed per minute.
Laccase production on solid substrate was expressed as unit per gram of
substrate. Xylanase, β-mannanase and cellulase production were determined by
analysis of reducing sugar released during hydrolysis of oat spelt xylan, locust
bean gum and carboxymethylcellulose (CMC), respectively. The reducing
sugar formed was determined by dinitrosalicylic method (Miller, 1959). One
unit of enzyme activity was defined as amount of enzyme that released 1
µmole of reducing sugar per minute.

Results and discussion

Laccase production on solid media

The highest laccase activity after 36 days of cultivation was obtained on
rice bran (1.98U/g substrate), those of rubber wood meal and Hang nok yoong
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wood meal were 0.06 and 0.07U/g substrate, respectively. In addition to
laccase production, C. versicolor strain RC3 also produced the high levels of
xylanase, β-mannanase and cellulase, especially on rice bran. The enzyme
production of β-mannanase, cellulase and xylanase were found up to 236.3,
167.0 and 173.4U/g substrate, respectively, after 7 days cultivation. It can be
suggested that C. versicolor strain RC3 utilize xylan, cellulose and mannan in
rice bran as carbon sources during the initial growth phase. Rice bran contains
total carbohydrate 82%(w/w) approximately and the main composition (31%)
was hemicellulose (Claye et al., 1996). The main component of rice bran
hemicellulose was expected to be arabinoxylan as most sugars found are xylose
and arabinose (Mod et al., 1978) and rice bran was also used as a sole carbon
source for xylanase production by Streptomycete actuosus A-151 (Wang et al.,
2003).

When the levels of those carbon sources decreases, laccase synthesis was
induced by phenolic compounds containing in rice bran, leading to increasing
of laccase production. This induction mechanism may help fungus to degrade
lignin or aromatic compounds in rice bran to supply further nutrients especially
carbon and nitrogen. The similar pattern in production of laccase and
hemicellulytic enzyme was also found with several white- and brown rot fungi
cultivated on Eucalyptus grandis wood chips (Machuca and Ferraz, 2001).
Trametes versicolor produced the highest xylanase and cellulase from solid
state culture at 15 days, while those of laccase and peroxidase were at 60 days
(Machuca and Ferraz, 2001).

 The fungal response in enzyme production support the previous work as
the deprivation of nitrogen and carbon sources is considered as a major factor
in triggering ligninolytic system of white rot fungi. (Leatham and Kirk, 1983;
Mester et al., 1996). Laccases were found in the initial state of cultivation on
rubber and Hang nok yoong wood meal, while other hemicellulolytic enzymes
were also produced at high levels and were markedly lower than those on rice
bran. The production of laccases in the presence of hemicellulolytic enzymes
such as xylanase or cellulase may reflect the low level of available carbon
sources such as mannan and xylan as described previously.

A comparison of laccase production on the three substrates is given in
Fig. 2. Cultivation on rice bran clearly exhibited the highest laccase production
and, if the time course of enzyme production in Fig. 1(A) is considered, it is
evident that laccase activity still increased after 36 days cultivation and this
have to be further studied.
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Fig. 1. Enzyme production on solid substrate cultivation of C. versicolor RC3 on rice bran (A),
Hang nok yoong wood meal (B) and rubber wood meal (C): • = laccase, ο = xylanase, □ = β-
mannanase and ∆ = cellulase.
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Fig. 2. Comparison of laccase production by C. versicolor RC3 on different solid substrates.

Laccase production in liquid media

Laccase activity obtained from rice bran liquid medium after 15 days of
cultivation was 0.22U/mL, while activity levels obtained from wheat bran,
glucose and rice straw meal liquid medium were 0.09, 0.01 and 0.01U/mL,
respectively (Fig. 3). Coriolus versicolor strain RC3 produced laccase on rice
bran liquid medium with levels 2.4 times higher than on wheat bran liquid
medium and 22 times higher than on glucose and rice straw meal liquid
medium. These results indicate that rice bran exhibits a higher inductive
capability in liquid medium than other carbon sources as also occurred on the
solid substrates. However, addition of rice straw in mineral salt broth (MSB)
increased laccase production by white rot fungus Daedalea flavida MTCC145
from 0.06 U/mL to 9.04 U/mL (Arora and Gill, 2001).

Effects of rice bran concentration in liquid medium on laccase production
is shown in Fig. 4. After 7 days, laccase production was 0.19U/mL from
2%(w/v) rice bran, while 0.08 and 0.17U/mL were obtained when using 0.5
and 1%(w/v) rice bran, respectively. Productivity of laccase using 2%(w/v) and
1%(w/v) rice bran was 9.5 and 17U/g rice bran, respectively. It was concluded
that the optimum concentration of rice bran was 1%(w/v). Rice bran at
2%(w/v) might be caused the excess level of carbon and nitrogen, which
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Fig. 3. Laccase production from C. versicolor RC3 by liquid cultivation in different carbon
sources for 15 days: • = rice bran, � = glucose, ∆ = wheat bran and x = rice straw meal

directly affected on ligninolytic enzyme production (Leatham and Kirk, 1983;
Mester et al., 1996).

Laccase production in both solid substrate and liquid medium, rice bran
was higher than other substrates. The inductive capability of rice bran to
laccase production may be related with its phenolic compounds such as ferulic
acid, vanillic acid which were reported to be an inducer for laccase production
by white rot fungi (Bollag and Leonowize, 1984; Munoz et al., 1997). Ferulic
acid is found approximately 0.1%(w/v) and easily prepared in large quantity
from rice bran (Taniguchi et al., 1999). Eight strains of white rot fungi
Pycnoporus cinnabarinus produced laccase in higher level with the average
value of 0.33-9.50U/mL in basal medium supplemented with 0.5mM ferulic
acid compare with 0.06-4.03U/mL in control group (Herpoel et al., 2000).

There are many reports concerning using rice bran as substrate for the
production of many biological compounds such as alpha amylase (Ikramul et
al., 2003) and antibiotics (Yang, 1996). Many agricutural wastes are also
investigated to use as substrates for laccase production by white rot fungi
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Fig. 4. Effect of different concentration of rice bran in liquid medium to laccase production: ∆
= 0% (control), � = 2% (w/v), • = 1%(w/v), x; 0.5%(w/v).

including grape seeds, grape stalks, barley bran (Lorenzo et al., 2002), cotton
stalk, molasses waste water (Kahraman and Gurdal, 2002) and wheat bran
(Souza et al., 2002). This work is a first report concerning rice bran utilizing
for laccase production. However, laccase production in both solid and liquid
medium cultivation did not reach the maximum level of laccase activity and the
prolonged cultivation is needed to observe the production both on solid and
liquid culture. Purification and characterization of laccase from C. versicolor
strain RC3 are in progress.
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